
Last updated on 28/07/2020 09:07

Business Analytics

PROGRAMACIÓN I

FUNCTIONS II

‣ Execution frames and namespaces

‣ Scope of variables

‣ Local and global keywords

FUNCTIONS II

‣ Execution frames and namespaces

‣ Scope of variables

‣ Local and global keywords

FUNCTIONS II

1. Title

An assignment statement creates a symbolic name that you can use to reference an object.

• The statement x = 'foo' creates a symbolic name x that refers to the string object 'foo’.

A namespace is a collection of currently defined symbolic names along with information about the

object that each name references.

• You can think of a namespace as a dictionary:

• keys are the object names

• values are the objects themselves.

• Each key-value pair maps a name to its corresponding object.

Assignments and namespaces

1. Title

• When you do an assignment, like a = 1, you’re changing/updating a namespace.

• When you make a reference, like print(a), Python looks through a list of namespaces to try and

find one with the name as a key.

We are going to see the structure of namespaces and how a reference is resolved.

Resolving

1. Title

Local Namespace: local names inside a function. Created when a function is called, and it only lasts
until the function returns.

Global Namespace:

• Names defined at the level of the main program

• includes names from various imported modules that you are using in a project. Created when the
module is imported in the project, and it lasts until the script ends.

Built-in Namespace: built-in functions and built-in exception names.

When we have functions inside functions, from the perspective of the inner (enclosed) function, the
namespace of the outer (enclosing function) is the enclosing namespace

Namespaces

https://docs.python.org/3/library/functions.html#dir returns names in the current local scope

https://docs.python.org/3/library/functions.html

‣ Execution frames and namespaces

‣ Scope of variables

‣ Local and global keywords

FUNCTIONS II

1. Title

• A scope defines which namespaces will be looked in and in what order.

• The scope of any reference always starts in the local namespace, and moves outwards until it

reaches the module's global namespace, before moving on to the built-ins (the namespace that

references Python's predefined functions and constants, like range and print), which is the end of

the line.

Scope

1. TitleResolving variables in the inner namespace

A_CONSTANT = 3

def outer():
def inner():

a_variable = 7
print(a_variable)

another_variable = 2
print(another_variable)
inner()

outer()
print(A_CONSTANT)

A_CONSTANT = 3

def outer():
def inner():

print(another_variable)

another_variable = 2
print(another_variable)
inner()

outer()

A_CONSTANT = 3

def outer():
def inner():

print(A_CONSTANT)

another_variable = 2
print(another_variable)
inner()

outer()

Variable resolved in the local namespace.

The scope of a_variable includes the inner namespace, so print(a_variable) works

1. TitleResolving variables enclosing namespace

A_CONSTANT = 3

def outer():
def inner():

a_variable = 7
print(a_variable)

another_variable = 2
print(another_variable)
inner()

outer()
print(A_CONSTANT)

A_CONSTANT = 3

def outer():
def inner():

print(another_variable)

another_variable = 2
print(another_variable)
inner()

outer()

A_CONSTANT = 3

def outer():
def inner():

print(A_CONSTANT)

another_variable = 2
print(another_variable)
inner()

outer()

Variable resolved in the namespace of an enclosing function.

The scope of another_variable includes the namespace of outer, as enclosing function of inner,

so print(another_variable) in inner works

1. TitleResolving variables in the global namespace

A_CONSTANT = 3

def outer():
def inner():

a_variable = 7
print(a_variable)

another_variable = 2
print(another_variable)
inner()

outer()
print(A_CONSTANT)

A_CONSTANT = 3

def outer():
def inner():

print(another_variable)

another_variable = 2
print(another_variable)
inner()

outer()

A_CONSTANT = 3

def outer():
def inner():

print(A_CONSTANT)

another_variable = 2
print(another_variable)
inner()

outer()

Variable resolved in the global namespace (of the module where it is called).

The A_CONSTANT is defined in the global namespace, which is reachable by any function in the

module, in particular the function of inner, so print(A_CONSTANT) in inner works

1. TitleResolving built-ins

A_CONSTANT = 3

def outer():
def inner():

print(another_variable)

another_variable = 2
print(another_variable)
inner()

outer()

The function print is built in, and can be used in any function in the model.

1. Title

Whenever you define a function, you create a new namespace and a new scope.

• The namespace is the new, local hash of names.

• The scope is the implied chain of namespaces that starts at the new namespace, then works its

way through any outer namespaces (outer scopes), up to the global namespace (the global scope),

and on to the built-ins.

Resolution, summary

1. TitleScope, summary

Scope: defines the parts of the program where names can be used without using any prefix

§ A local scope: innermost scope that contains a list of local names available in the

current function.

§ A scope of all the enclosing functions. The search for a name starts from the nearest

enclosing scope and moves outwards.

§ A module level scope that contains all the global names from the current module.

§ The outermost scope that contains a list of all the built-in names. This scope is

searched last to find the name that you referenced.

1. TitleGood practices

If you need a constant, to be used across multiple functions in a module, define it as a

global variable (typically after imports). Use CAPITAL convention.

Try to avoid shadowing: occurs when a variable declared within a certain scope has the

same name as a variable declared in an outer scope.

Avoid ”side effects” of functions: use parameters for inputs and returns for outputs. Python

will not create copies

‣ Execution frames and namespaces

‣ Scope of variables

‣ Local and global keywords

FUNCTIONS II

1. Title

• Global variable: defined at module level (in the global namespace). Can be used by any function

in the module.

• Local variable: defined in a function used inside the function

• Non local variable: defined in a function, used in a nested function.

Global, local and non local variables

1. TitleGlobal and local variables

This is OK. In my_function we can resolve the
global variable global_var, even if defined later

def my_funciton():
local_var = 2
print(global_var, local_var)

global_var = 1
my_funciton()

1. TitleShadowing

This generates an Exception, because global_var is defined in the
function and therefore it is considered local,
but in print, it is not defined

It is, in general, bad practice to "shadow" with local variables
variables names from outer scope

def my_funciton():
local_var = 2
print(global_var, local_var)
global_var = 3

global_var = 1
my_funciton()

Exception (error)

1. TitleShadowing (II)

This does not generate an error, but, again, local_var
in inner is shadowing the same name in an outer scope
Inner does not change outer's local_var

def outer():
def inner():

local_var = 7
print(local_var)

local_var = 2
print(local_var)
inner()
print(local_var)

outer()

1. TitleGlobal keyword

We want to ensure that the reference is to a global variable, and we are not defining a new variable:

def outer():
def inner():

global a_variable
a_variable = 7
print(a_variable)

a_variable = 2
print(a_variable)
inner()
print(a_variable)

a_variable = 10
outer()
print(a_variable)

We indicate that a_variable, in inner, is not

redefined, but tied to global variable.

With no global keyword, a_variable is

defined here as a local variable in inner

def outer():
def inner():

a_variable = 7
print(a_variable)

a_variable = 2
print(a_variable)
inner()
print(a_variable)

a_variable = 10
outer()
print(a_variable)

1. TitleNonlocal keyword

Functions within functions

The global keyword is no help here as the outer function’s variables are not global, they are local to a

function.

Nonlocal: look within the scope in which the function is defined to find a local variable with the same

name

def outer():
title = "original title"

def inner():
nonlocal title
title = "another title"
print("inner:", title)

inner()
print("outer:", title)

